Enhancement of the Current Density *J*_C for Bi₂Sr₂CaCu₂O₈ by Means of Carbon and NbSe₂ Nanotubes

D.H. Galvan · A. Durán · F.F. Castillón · E. Adem · R. Escudero · D. Ferrer · A. Torres · M. José-Yacamán

Received: 24 April 2008 / Accepted: 25 June 2008 / Published online: 31 July 2008 © Springer Science+Business Media, LLC 2008

Abstract Three polycrystalline $Bi_2Sr_2CaCu_2O_8$, $Bi_2Sr_2CaCu_2O_8$ with carbon nanotubes, $Bi_2Sr_2CaCu_2O_8$ with NbSe₂ nanotubes were synthesized by solid state reaction method and studied by scanning electron microscopy, X-ray diffraction, magnetization measurements, and high resolution transmission electron microscopy.

The critical temperature $T_{\rm C}$ for the three compounds was about 85 K. There is an enhancement in the critical current density, $J_{\rm C}$ for samples with carbon and NbSe₂ nanotubes as compared with pure Bi₂Sr₂CaCu₂O₈. The enhancement provides evidence that *wetting* exists for the two doped samples investigated.

Keywords Superconductivity · Wetting · Nanotubes

PACS 74.72.-h

D.H. Galvan (⊠) · A. Durán · F.F. Castillón Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 2681, C.P. 22800, Ensenada, BC, Mexico e-mail: donald@cnyn.unam.mx

D.H. Galvan · D. Ferrer · A. Torres · M. José-Yacamán International Center for Nanotechnology and Advanced Materials, University of Texas at Austin, Austin, TX 78712, USA

R. Escudero

Instituto de Investigación en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, México, DF, 04510, México

E. Adem

Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, C.P. 01000, México, DF, México

1 Introduction

Since the discovery of high temperature superconductivity in the cuprates [1-3] such as YBa₂Cu₃O_{7-x}(YBCO) and Bi2Sr2CaCu2O8 (BSCCO), a great deal of research has been carried out on flux pinning in these materials in order to find ways of increasing their critical current density $J_{\rm C}$ for technological applications. In order to achieve this goal, several methods had been reported in the literature such as adding impurity phases to the superconductor like Y2Ba2CuO2 [4], columnar defects generated by ion irradiation [5], point defects generated by oxygen deficiency [6], or chemical substitution [7, 8]. In our previous work [9], we presented experimental evidence of a small enhancement on $J_{\rm C}$ by carbon nanotubes (CN) intercalation produced by irradiation in polycrystalline BSCCO samples. In this paper, we continue our quest in order to explore possible manners of increasing $J_{\rm C}$, by adding CN produced by spray pyrolisis [10] and NbSe₂ nanotubes [11] on BSCCO. It had been demonstrated in one of our early studies [12] a method for embedding CN in BSCCO samples, unfortunately, by this method was impossible to predict the quantity of CN added to the BSCCO matrix. We speculated that only about 20 weight percent of the graphite used in order to create the CN by irradiation, were nanotubes. The same criterion was followed for the case of NbSe2 nanotube production. Nonetheless, wetting by the BSCCO matrix appears as a necessary condition for enhancing flux pinning with a subsequent enhancement of the critical current density $J_{\rm C}$. In our study, we decided instead to use a solid-state technique in order to embed the CN produced by spray pyrolisis, as well as the NbSe₂ nanotubes produced by irradiation into the BSCCO matrix. Morphological inspection, X-ray diffraction, and magnetization

Fig. 1 X-ray diffraction patterns for pure BSCCO (*lower graph*), BSCCO plus 0.008 CN (*middle graph*) and BSCCO plus 0.32 NbSe₂ (*top graph*) nanotubes

measurements were performed in order to ascertain the *wetting* effect (CN and NbSe₂ nanotubes) on $J_{\rm C}$ in the BSCCO superconductor compound. It is important to mention that this work is the first study of the enhancing of $J_{\rm C}$ when NbSe₂ nanotubes are added into the BSCCO (2212) phase.

2 Experimental Details

The BSCCO samples were prepared by means of solid-state reaction techniques as was reported by our group [9]. Also, the CN produced by spray pyrolisis have been reported by Galvan et al. [10]. This selected preparation method was used because the nanotubes are formed in a highly dense concentration and growing in a specific direction, which make them suitable to be used for our purpose of embedding them into the BSSCO matrix.

One of the questions which we did not consider in our former investigation on the same subject was related to the *real* quantity of CN added to the BSCCO sample. Accordingly, we performed a statistical analysis on different samples and different areas of the CN produced by pyrolisis [9]. With this method, it is estimated that about 90% of the complete area was CN. On the other hand, in NbSe₂ nanotube samples produced by irradiation, as explained before only about 20% of the total analyzed area were nanotubes.

Three pellets of the BSCCO powders were made: Pure BSCCO, BSCCO with CN, and BSCCO with NbSe₂ nanotubes. Afterwards, the three pellets were subjected to a heat treatment for $300 \degree$ C/5 hours with subsequent heating for

Fig. 2 Magnetization M vs temperature T for pure BSCCO, BSCCO + CN and BSCCO + NbSe₂ nanotubes, respectively

Fig. 3 Magnetization M vs magnetic field H isotherms at T = 4 K for the three samples

650 °C/10 hours in flowing Ar which allows for a good *wet*ting contact between the nanotubes and the BSCCO matrix as reported by Fossheim et al. [13]. A subsequent oxygen heat treatment at the same temperature and time was performed in order to optimize the superconducting properties of the sample.

Scanning Electron Microscopy (SEM) measurements were performed on a JEOL–JSM 300 microscope for each sample in order to analyze the morphologic characteristics of the composite material; furthermore, phase identification for each sample was carried out using X-ray diffraction measurements with a Philips XRD/X'PERT diffractometer using Cu K_{α} radiation at a voltage of 40 KV and a current of 45 mA.

Material	<i>T</i> _C (K)	Grain size $(\mu m) b \times a$	Average ΔM (emu/gm)	Density (gm/cm ³)	Average J _C (MA/cm ²) 4 K	Average J _C (MA/cm ²) 10 K
Pure BSCCO	≅85	2.4×6.6	2.8 (4 K) 1.06 (10 K)	6.54	1.73 ± 0.33	0.65 ± 0.18
BSCCO + CN	≅85	1.9 × 3.8	2.96 (4 K) 1.25 (10 K)	6.54	2.46 ± 0.57	0.91 ± 0.29
BSCCO + NbSe ₂ -N	≅85	1.4×4.7	2.88 (4 K) 1.13 (10 K)	6.54	4.12 ± 0.59	1.62 ± 0.53

Fig. 4 4 SEM micrograph for BSCCO with carbon nanotubes. Notice the CN immersed into the BSCCO matrix

density and average intergranular critical current density J_C at 4 and 10 K for pure BSCCO, BSCCO + CN and BSCCO + NbSe₂ nanotubes

Magnetization measurements were performed on rectangular samples with $5 \times 3.0 \times 1.2$ mm dimensions using a *Quantum Design MPMS-5S* and a *MagLab2000* magnetometers.

BSCCO samples (with CN and NbSe₂ nanotubes) were pulverized and dispersed in ethanol. A droplet of this suspension was deposited on a holey silicon oxide supported in copper grids for transmission electron analysis (TEM). The samples were analyzed with the aid of a JEOL 2010 F microscope equipped with a Schottky-type field emission gun, ultra-high resolution pole piece (Cs = 0.5 mm), operating at 200 kV. A Gatan CCD camera was used for image acquisition.

3 Results and Discussion

In order to detect any possible changes in the unit cell of the BSCCO matrix, X-ray diffraction was performed on each sample. X-ray patterns for pure BSCCO (lower figure), BSCCO plus 0.008% weight percent of CN (middle figure) and BSCCO plus 0.32% weight percent NbSe₂ (top figure) nanotubes are provided in Fig. 1. Comparing the BSCCO plus CN with pure BSCCO as has been reported by Namgung et al. [14] corresponding to PDF card No. 00-041-0317 from the International Centre for Diffraction Data, [the 22° corresponds to (0 0 8), the 23° corresponds to (1 1 3), the 29° corresponds to (1 1 5), while the 35° corresponds to (0 2 0) reflective planes, respectively]. It is possible to observe a perfect match between all the diffraction peaks, except for a small shoulder located at about 29° in pure BSCCO that has been changed in the BSCCO plus CN. On the other hand, when a comparison has been performed on the BSCCO plus NbSe₂ with pure BSCCO, a difference is observed at about 22°. This peak is reduced in the BSCCO plus NbSe₂ nanotubes. Moreover, the peak located at 29° in pure BSCCO, is formed by a multiplete, while in the BSCCO plus NbSe₂ nanotubes has been changed to a single peak. This may indicate that a change has occurred in the original unit cell due to the inclusion of the CN or NbSe₂. We speculate that certain amount of CN has been embedded into the BSCCO matrix, although in order to prove this asseveration, a more careful analysis like HRTEM, should be performed and will be explained letter on this investigation.

Figure 2 yields magnetization M vs. temperature T for pure BSCCO, BSCCO with CN and BSCCO with NbSe₂ nanotubes, respectively. M(T) measurements were from 2 to 120 K, in a zero-field (ZFC) and field cooling (FC) modes, under a magnetic field intensity of 10 Oe. The resulting superconducting transition temperature for the three samples was $T_{\rm C} = 85$ K.

Magnetization *M* vs magnetic field *H* isotherms at T = 4 K for the three samples enunciated in the former paragraph are provided in Fig. 3. The hysteresis loops are reminiscent of typical high $T_{\rm C}$ superconducting samples. There, BSCCO plus NbSe₂ increases the area hysteresis loop, as compared with pure BSCCO. The experimental critical current density, $J_{\rm C}$ for each sample can be obtained using Bean critical state model [15, 16]. For rectangular parallelepiped samples [17], the following equation is used:

$$J_{\rm C} = 20\Delta M / [b - b^2 / 3a],$$
 (1)

where *a* and *b* are superconductor grain dimensions which were considered to be transverse to the direction of the magnetic field applied, also, b > a, ΔM is the magnetization difference between increasing and decreasing field branches taken from the hysteresis loop and is obtained from M(H)data of Fig. 3. As ΔM was measured in emu/gm and in order to be used in (1) should be converted to emu/cm³ of the selected sample, hence, it will be necessary to know weight percent as well as the theoretical density for BSCCO, which was provided in our former investigation [9].

Grain size dimensions in the superconducting material, a and b were obtained from SEM measurements, and a statistical study was performed in different areas of each sample separately. Figure 4 shows a SEM micrograph for BSCCO with CN. Notice that the nanotubes emerge from the BSCCO matrix which assess that there is a true *wetting* in which they are embedded. The values for $T_{\rm C}$ obtained from Fig. 3, average grain size, ΔM , density, and $J_{\rm C}$ are provided in Table 1.

The value of the critical current density $J_{\rm C}$ at 4 K reported for pure BSCCO was 1.73 ± 0.33 MA/cm², while

Fig. 5 (a) to (c) High Resolution Transmission Electron micrograph for pure $Bi_2Sr_2CaCu_2O_8$, $Bi_2Sr_2CaCu_2O_8$ plus carbon nanotubes and $Bi_2Sr_2CaCu_2O_8$ plus NbSe₂ nanotubes. (d) EDX for the samples mentioned above, notice that only the compounds for BSCCO, CN and NbSe₂ are shown

(b)

for BSCCO with CN the $J_{\rm C}$ value reported was 2.46 ± 0.57 MA/cm² and for BSCCO with NbSe₂ nanotubes the critical current density value reported was 4.12 ± 0.59 MA/cm². Notice there has been a steady increment on $J_{\rm C}$ when CN (1.42 time the BSCCO value), as well as NbSe₂ (2.38 times the BSCCO value) nanotubes had been added to the BSCCO samples.

In addition, the values for the critical current at 10 K for pure BSCCO was 0.65 ± 0.18 MA/cm², while for BSCCO plus CN the value obtained was 0.91 ± 0.29 MA/cm² and

(c)

Fig. 5 (Continued)

for BSCCO plus NbSe₂ nanotubes the reported $J_{\rm C}$ was 1.62 ± 0.53 MA/cm².

Furthermore, there has been a steady increment on $J_{\rm C}$ when CN (1.42 times BSCCO value), as well as when NbSe₂ (2.49 times BSCCO value) had been added.

An important result of this study is the steady increment on $J_{\rm C}$ when carbon nanotubes were added to the BSCCO. The increase observed, respect to pure BSCCO, and was 1.42 times the BSCCO value, whereas for BSCCO plus NbSe₂ the increase was 2.38 times the BSCCO value. It is worth mentioning that the experimental error in the measurements, are small numbers, which might provide an indication that the samples are homogeneous. Nevertheless, the most important point is the $J_{\rm C}$ increase for BSCCO plus

NbSe₂ nanotubes sample. This effect indicates the appropriated wetting in the BSCCO matrix and that the metallic nature of NbSe₂ has a profound effect in the vortex pinning. The immediate question arises about if the influence of the superconducting state of NbSe₂ is important or not on $J_{\rm C}$ enhancement. This was proved by performing isothermal magnetic measurements below and above the transition temperature, in Table 1, we show that the enhancement of the critical current density follows a normal trend of decreasing when T was 10 K (above $T_{\rm C}$ of NbSe₂ [19]). This result seems to confirm that the metallic nature of the NbSe₂ wetting the BSCCO matrix increases the vortex pinning, and consequently increasing the $J_{\rm C}$. Lastly, we have to remember that producing carbon nanotubes for any method known today gives an average of about one-third of metallic nanotubes of the total production. The nonmetallic or insulating form of carbon nanotubes accordingly, may deleterious to a vortex pinning effect.

HRTEM images taken on pristine BSCCO and BSCCO with CN as well as BSCCO plus NbSe₂ are shown on Figs. 5(a) to (c). Figure 5(a) provides a HRTEM micrograph for pure Bi₂Sr₂CaCu₂O₈ phase. Moreover, Fig. 5(b) yields a HRTEM micrograph of a sample composed of BSCCO plus CN. Notice that in the same micrograph it is possible to locate two different crystallographic arrangements corresponding to BSCCO and Bi-O planes located within the BSCCO crystal. On the right side of the figure are the reconstructed images obtained from the corresponding Fourier transforms generated in the selected regions, as marked with dotted lines. Furthermore, Fig. 5(c) corresponds to a HRTEM micrograph for BSCCO plus NbSe₂ nanotubes. Notice that in the same micrograph we can isolate two distinct areas, one corresponding to BSCCO while the intermediate phase resembles to the one dimensional morphology observed in nanotube structures. Figures 5(d) yield the EDS analysis for the samples mentioned above. Notice that only Bi, Sr, Ca, Cu, C, Nb, and Se are shown in the corresponding figure, providing indication that those elements are present for each case.

4 Summary

We have investigated the inclusion of CN made by pyrolisis into the BSCCO matrix providing evidence that *wetting* exists with an enhancement of 1.42 times the original value of J_C from the pure BSCCO (at 4 K). Moreover, we reported for the first time to our knowledge, the inclusion of NbSe₂ nanotubes produced by irradiation into the BSCCO matrix with a reported enhancement of 2.38 times the original value of J_C of the pure BSCCO (at 4 K) and an indirect evidence for the existence of *wetting*. The enhancements obtained for the two systems provide indication that the method could be considered a plausible way to increment the critical current density in superconductors like BSCCO and use them in industrial applications. Moreover, there is no decrement in the critical temperature for the two systems considered which a beneficial factor is obtained. X-ray analysis provides evidence that some kind of change had occurred in the original unit cell of the BSCCO matrix, although in order to provide a clear evidence of *wetting* a HRTEM analysis should be performed. Our HRTEM analysis is preliminary and we expect to continue with our investigation in order to provide more conclusive evidences of this process.

Acknowledgements D.H. Galván would like to acknowledge I. Gradilla, F. Ruiz, G. Vilchis, E. Aparicio, and M. Sáinz for technical support. We acknowledge DGAPA under project IN 101107 and F. Sivar for technical support.

References

- Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., Chu, C.W.: Superconductivity at 93 K in a new mixed phase Y–Ba–Cu–O compound system at ambient temperature. Phys. Rev. Lett. 58, 908 (1987)
- Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: A new high-*T_c* oxide superconductor with rare earth element. Jpn. J. Appl. Phys. 27, L209 (1988)
- 3. Sheng, Z.Z., Hermann, A.M.: Bulk superconductivity at 120 K in the Ta-Ca/Ba-Cu-O system. Nature **332**, 138 (1988)
- Lee, D.F., Selvamanickam, V., Salama, K.: Influence of Y₂BaCuO₅ particle size and content on the transport critical current density of YBa₂Cu₃O_x superconductor. Physica C 202, 83 (1992)
- Wu, N., Zern, H.H., Chen, C.: Low temperature melt growth of YBa₂Cu₃O_{7-x}/silver composite in partial vacuum. Physica C 241, 198 (1995)
- Pradhan, A.K., Feng, Y., Shibata, S., Nakao, K., Koshizuka, N.: Role of oxygen on the flux pinning and vortex phase transitions in the NdBa₂Cu₃O_{7-δ} crystals. Physica C **357–360**, 457 (2001)
- Oka, T., Itoh, Y., Yanagi, Y., Tanaka, H., Takashima, S., Yamada, Y., Mitzutami, U.: Critical current density and mechanical strength of YBa₂Cu₃O_{7-δ} superconducting composites containing Zr, Ag and Y₂BaCuO₅ dispersions by melt-processing. Physica C 200, 55 (1992)
- Rayaprol, S., Mavani, K.R., Rana, D.S., Thaker, C.M., Dixit, M., Bhattacharya, S., Kuberkar, D.G.: Studies on La_{2-x}Pr_xCa_yBa₂Cu_z mixed superconductors. Solid State Commun. **128**, 97 (2003)
- Galvan, D.H., Li, S., Yuhasz, W.M., Kim, J.-H., Maple, M.B., Adem, E.: Nondestructive interaction of carbon nanotubes with Bi₂Sr₂CaCu₂O₈. Physica C 403, 145 (2004)
- Galvan, D.H., Aguilar-Elguezabal, A., Alonso, G.: High resolution TEM study of carbon nanotubes by spray pyrolisis. Optical Materials 29, 140 (2006)
- Galvan, D.H., Kim, J.-H., Maple, M.B., Avalos-Borja, M., Adem, E.: Formation of NbSe₂ nanotubes by electron irradiation. Fullerene Sci. Technol. 8(3), 143 (2000)
- Galvan, D.H., Kim, J.H., Maple, M.B., Hirata, G.A., Adem, E.: Flux pinning effecto of embedded carbon nanotubes in Bi₂Sr₂CaCu₂O₈. Physica C 341–348, 1269 (2000)

- Fossheim, K., Tuset, E.D., Ebessen, T.W., Treacy, M.M.J., Schwartz, J.: Enhanced flux pinning in Bi₂Sr₂CaCu₂O_{8+x} superconductor with embedded carbon nanotubes. Physica C 248, 195 (1995)
- Namgung, C., Irvine, J.T.S., Lachowski, E.E., West, A.R.: Inconmensurate structure and X-ray powder diffraction data for Bi₂Sr₂CaCu₂O_{8+x}. Superconductor Sci. Technol. 2, 140 (1989)
- Bean, C.P.: Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250 (1962)
- Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31 (1964)
- Terasawa, M., Takezawa, N., Fukushima, K., Mitamura, T., Fan, X., Tsubakino, H., Kohara, T., Ueda, K., Awaya, Y., Kambara, T., Matsuda, M., Tatara, G.: Flux pinning and flux creep in La_{2-x}Sr_xCuO₄ with splayed columnar defects. Physica C **296**, 57 (1988)
- Kasamov, A.Y., Deblock, R., Kociak, M., Reulet, B., Bouchiat, H., Kodos, I.I., Gorbatov, Y.B., Volkov, V.T., Journet, C., Bougard, M.: Supercurrent through single-walled carbon nanotubes. Science 284, 1508 (1999)
- Henderson, W.B.: Ph.D. Dissertation, The State University of New Jersey (1997)