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HYDROTHERMAL  SYNTHESIS  OF  Co3O4  NANO-
OCTAHEDRA  AND  THEIR  MAGNETIC  PROPERTIES
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Abstract. Highly uniform cobalt oxide (Co3O4) nano-octahedra with mean edge length about 16.4±3.1
nm have been prepared using a hydrothermal method. X-ray diffraction pattern shows the normal
spinel structure with formula Co2+ (Co3+)2O4 as the only crystallographic phase. The Co3O4

nanoparticles were characterized by UV-Vis and Raman spectroscopies and its morphology was
determined by scanning and high resolution transmission electron microscopies. Magnetic prop-
erties of Co3O4 nano-octahedra were determined with a MPMS SQUID magnetometer. The block-
ing temperature (Tb) at 8K and a slight hysteresis loop indicating a ferrimagnetic behavior were
observed. The magnetic response could be explained by uncompensated surface spins of the
Co3O4 nanoparticles.

1. INTRODUCTION

Cobalt oxide (Co
3
O

4
) is a promising material for

use as a gas sensor and catalyst in hydrocracking
processes of crude fuels, pigment for glasses and
ceramic. [1-5]. Highly dispersed nanostructured
spinel cobalt oxide is expected to display better
performance in the above mentioned application
aspects. Specific morphologies and crystallo-
graphic phases of nanostructures materials are
responsible for their optical, magnetic and electric
properties [6].

Co
3
O

4
 belongs to the normal spinel structure,

which is based on a cubic close packing array of
oxide ions in which Co(II) ions occupy the tetrahe-
dral 8a sites and Co(III) ions ocuppy the octahe-
dral 16d sites [7]. Synthesis of cobalt oxide
nanoparticles have been obtained by different

methods as solvothermal, mechanochemical, re-
duction–oxidation, sol-gel and polymer combustion,
generating different morphologies like nanotubes,
nanorods, nanocubes, and spherical particles [8-
19].

Increasing interest has been generated with
antiferromagnetic nanoparticles since the discov-
ery of their potentials for quantum tunneling [20,21]
and their applications in spin-valve systems [22].
In bulk crystalline form, Co

3
O

4
 exhibits antiferro-

magnetism with Néel temperature of about T
N
 =

33K [23].
Early studies by Néel suggested that

nanoparticles of antiferromagnetic materials should
exhibit superparamagnetic behavior or a weak fer-
romagnetism, which may be ascribed to the re-
duced coordination of the surface spins, leading to
important changes in the magnetic order.
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Fig. 1. XRD pattern of Co
3
O

4
 nanoparticles. All peaks can be indexed to Co

3
O

4
 cobaltite, with structure

given by JCPDS No.421467.

Fig. 2. SEM micrograph of Co
3
O

4
 nanoparticles.

Note the spinel octahedral morphology.

Makhlouf [24] reported magnetization and mag-
netic relaxation measurements in Co

3
O

4
 particles

with sizes about 20 nm, he observed a narrow cusp
at about 25K in zero field-cooling (ZFC) magneti-
zation and irreversibility in the field-cooling mode
(FC). Both FC and ZFC modes bifurcate at lower
temperatures. Above 60K magnetization tempera-
ture measurements, M-T obey Curie-Weiss law
with negative Weiss temperature, θ at about 85K.

In this work, we present a facile synthesis
method, in mild reaction conditions to obtain Co

3
O

4

nano-octahedra with average crystallite size of
16.4±3.1 nm, and their structural and magnetic
study

2. EXPERIMENTAL

2.1 Synthesis

In a typical synthesis, an aqueous solution of 0.4M
CoCl

2
×6H

2
O (Aldrich 99%) was prepared adding

drop to drop 0.5 ml of 0.5 M ammonium hydroxide
up to obtain a pink precipitate (pH 8±0.5) of
Co(OH)

2
 according to following reaction:

CoCl NH OH

Co OH NH Cl.

2 4

RT

2 4

+

+ +

 →
+� �

The precipitate was washed with distilled water
to remove Cl– and NH

4
+ ions, and the final product

was dried at room temperature and then, calcined
in air at 150 °C for 2 h as follows:

3 Co OH 1/ 2O

Co O 3 OH .

2 2

150 C, 2

3 4 2

� � +

+

° → hrs

2.2. Characterization Techniques

X-ray diffraction pattern was obtained at room tem-
perature with Cu Kα radiation (λ = 1.5406 Å) be-
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Fig. 3. HR-TEM micrograph of nanocrystalline Co
3
O

4
 and its corresponding electron diffraction pattern.

Fig. 4. UV-visible electronic absorption spectrum of Co
3
O4 Nps.

tween 2.5° and 70° with a 2θ step of 0.02° for 0.8 s
per point, using a D5000 Siemens diffractometer.
UV-Vis electronic absorption spectrum was mea-
sured in diffuse reflectance mode in the 200–1200
nm wavelength range with an Ocean-optics

HR4000 spectrometer. Raman spectrum was ob-
tained from 200 to 900 cm–1 with a Nicolet Almega
XR dispersive Raman spectrometer, using a scan
time of 25 s and resolution of ~4 cm–1. An Nd:YVO

4

532-nm laser was used for excitation and the inci-
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Fig. 5. Raman spectrum of Co
3
O

4 
nano-octahedral.

Fig. 6. Temperature dependence of FC and ZFC magnetization for Co
3
O

4 
nanoparticles.
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Fig. 7. Hysteresis loop obtained at 2K.

dent power on the sample was ~10 mW. High-reso-
lution transmission electron micrographs (HR-
TEM) were obtained in a JEOL 2010 FASTEM ana-
lytical microscope operating at 200 kV, by deposi-
tion of Co

3
O

4
 powder dispersed in methanol onto a

200-mesh Cu grid coated with carbon layer. Scan-
ning electron micrographs (SEM) were obtained in
a JEOL JSM5900 LV microscope by direct immer-
sion of a grid into Co

3
O

4
 powder, without the use of

any solvent. Magnetic studies were performed on
a MPMS SQUID Quantum Design Magnetometer
on powdered sample of Co

3
O

4
 nano-octahedra.

The temperature was varied between 2 and 300K
according to a zero field cooling (ZFC)/field cool-
ing (FC) procedure at 100 Oe, and the hysteresis
loop was obtained at 2K, in a magnetic field of up
to ± 3T.

3. RESULTS AND DISCUSSION

The X-ray powder diffraction pattern of the
nanocrystalline product is showed in Fig. 1. All dif-
fraction peaks can be perfectly indexed to cobalt
oxide Co

3
O

4
 spinel structure (JCPDS 42-1467) with

a unit symmetry described by the space group
Fd3m and lattice parameter a = 8.083 Å. The XRD
pattern reveals the high purity of the sample.

To determine the average crystallite size
(16.4±3.1 nm) we used the classical Scherrer equa-
tion over all reflections. The Co

3
O

4
 nano-crystals

morphology was examined by SEM. Fig. 2 shows
the formation of homogeneous nano-octahedra.

The HR-TEM micrograph (Fig. 3) shows an iso-
lated Co

3
O

4
 nanocrystallite with dimensions of

about 20.5 nm. The interplanar distances deter-
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mined from their corresponding electron diffraction
patterns confirm that the nanocrystals are com-
posed of Co

3
O

4
.

With the aim of to study the optical response of
the Co

3
O

4
 nano-octahedra, UV-Visible electronic

absorption spectroscopy using diffuse reflectance
technique (DRS) was obtained. Fig. 4 shows a typi-
cal absorption spectrum of Co

3
O

4
 nanoparticles

where two wide absorption bands are observed.
The first band from 250 to 450 nm involves the
charge transfer transitions O2– → Co2+ and
O2– → Co3+ and Co(III) in an octahedral site:
1A

1g
 → 1T

2g
. The second band centered about 650

nm is assigned to Co(III) in an octahedral site:
1T

1g
 ← 1A

1g
  and Co(II) in a tetrahedral site:

4T
1
 ← 4A

2
 [25].

Furthermore, it is well known that Raman spec-
troscopy is a nondestructive technique which in the
last years has been extensively used in
nanostructure characterization. Fig. 5 shows the
Raman spectrum of the nanocrystalline Co

3
O

4,
 five

active Raman modes characteristic of this cobalt
oxides are evident at 188, 476, 518, 607, and 685
cm–1, in agreement with those reported by Hadjiev
et al. [26].

3.2 Magnetic measurements

Magnetic M-T measurements were performed at
temperatures from 2 to 300K under a 100 Oe field.
Fig. 6 shows the M-T curves of both FC and ZFC
for the Co

3
O

4
 nano-ctahedra sample. T

N
 could not

be observed at around 33K; however, the FC and
ZFC curves were strongly bifurcated at 8K. This
bifurcation temperature of FC and ZFC was de-
fined as the blocking T

b
 temperature. These par-

ticles could be considered to form a single domain
ordered antiferromagnetically, below T

N
 = 33K.

Magnetization far above T
b
 presents a paramag-

netic behavior, whereas near above T
b,

 a
superparamagnetic response was observed. The
hysteresis curve at a temperature of 2K is given in
Fig. 7. Coercivity was observed at 1200 Oe.

Below T
b,
 a slight hysteresis loop appears indi-

cating a ferromagnetic behavior. This magnetic
response could be explained by uncompensated
surface spins of the Co

3
O

4
 nanoparticles. Ichiyanagi

et al. [27 ] reported similar magnetic behavior on
Co

3
O

4
 nanoparticles with an average size of be-

tween 3.1 and 9.2 nm.

4. CONCLUSIONS

Co
3
O

4 
nano-octahedra in a single spinel phase were

obtained by a facile hydrothermal method at mild

reaction conditions. A weak ferrimagnetism is ob-
served at temperatures below 8K due to uncom-
pensated surface spins behaving
superparamagnetically, the total magnetic spins
became easy to order. At high magnetic field, M-T
follows a Curie-Weiss law without any irreversibil-
ity.
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